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1. Method Details

NeRF [4] is the pioneering method that represents a scene
implicitly using a fully-connected MLP network. It can
synthesize high-quality novel views through volume ren-
dering. We utilize 12 layers with the width 512 for both
the coarse and fine networks. The 3D location of the maxi-
mum frequency for positional encoding is set to 16 instead
of 10. Additionally, we incorporate three skip connections
that concatenate the input to the activations of the 4th, 8th,
and 10th layers.

DVGO [6] represents the scene by means of optimizing
dense grids, comprising of density grids for scene geometry
and feature grids with a shallow MLP network for view-
dependent appearance in detail. We removes the coarse ge-
ometry search step because the view-count-based learning
rate prior is ineffective for urban scenes. This is because
the edge views are often underrepresented, making it chal-
lenging to optimize the algorithm. Furthermore, we set the
number of voxels in the fine stage to 500> to ensure a fair
comparison with other methods.

Instant-NGP [5] introduces a multi-resolution hash encod-
ing structure, which guarantees both efficiency and accu-
racy in the modeling process. We increased the number of
parameters for the hash encoding. Specifically, we utilized
16 levels for the hash encoding, with each individual hash
table containing 222 entries. The resolution ranged from 16
to 65536.

TensoRF [2] models the scenes as a 4D tensor, consisting of
3D voxel grids and a multi-channel feature. These tensors
are then decomposed into compact vector and matrix factors
for more efficient processing. In our paper, we adapt the
grid resolution to 5003 to better model the large-scale scene
and upsample the grids resolution at the 2000th, 3000th,
4000th, 5500th, 7000th, 10000th, 12000th, 14000th itera-
tions. Additionally, we discover that the softplus activation

function is unstable for large-scale urban scenes and thus
replace it with ReL.U.

MipNeRF-360 [1] employs a non-linear parameterization
technique, coarse-to-fine online distillation, and a distortion
loss function to address unbounded artifacts. We normalize
the camera poses of the trained images into a unit sphere for
the contraction operation. We utilize 4 layers-MLP with the
width 256 for the propose network and 8 layers-MLP with
the width 1024 for the nerf network.

For all the experiments in our paper, we resize the 1080P
images into 540 x 960 for training and testing. Each single
model except MipNeRF-360 is trained on a single Nvidia
A100 GPU device for around 0.5-30 hours. We use 4 Nvidia
A100 GPU to train MipNeRF-360 for around 10 hours.

2. More Results on Aerial Data

To investigate the characteristics of the grid-based meth-
ods and MLP-based nerf methods for large area modeling,
we conducted experiments using aerial data of an entire
small city. We increase the capacity of the MipNeRF-360
by extending its nerf network to 12 layers, and enlarge the
grid resolution of TensoRF to 15003, As shown in Table 2,
the MLP-based nerf methods, NeRF and MipNeRF-360,
exhibit a significant decline in performance when modeling
larger areas, although the model has been enlarged. Un-
like MLP-based methods that utilize continuous networks,
the grid-based approach of TensoRF and Instant-NGP uti-
lizes discrete grids. By increasing the grid resolution, the
model exhibits almost no drop in performance when model-
ing larger areas. As illustrated in Figure 1, the learning per-
formance for details significantly diminished for both NeRF
and MipNeRF-360 after expanding the area size, despite the
accompanying increase in model size. For TensoRF and
Instant-NGP, expanding the area size with increasing the
grid resolution in proportion does not significantly affect



Block | 1 2 3 4

5

6 7 8 9 10

Height | 150m 150 m 300 m

500m 450m 450 m

350m  350m 250m  200m

Table 1: Heights of different aerial block splits for the Small City data collection.

Data Type NeRF [4] TensoRF [2] Instant-NGP [5] MipNeRF-360 [!]
MY PSNRT SSIM1 LPIPS| | PSNR1T SSIMT LPIPS| | PSNRT SSIM1t LPIPS| | PSNRT SSIM?T LPIPS |
Multi-model 22.97 0.589 0.548 25.13 0.762 0.396 25.69 0.800 0.326 25.73 0.779 0.360
Single-model 21.69 0.510 0.638 25.09 0.752 0.370 25.46 0.751 0.402 24.41 0.689 0.469

Table 2: Performance comparison of different kinds of methods on the aerial data of our M atrixC'ity benchmark with the
multi-model and the single model settings. Note that the multi-model represents that we divide the small city into five blocks
and train a separate model for each block. The single-model represents that we train a single model for the whole small city.

the learning of details. However, as shown int the second
row of Figure 1, training high-rise buildings and low-rise
buildings together with a shared bbox can lead to the air
above the low-rise buildings being relatively dirty, which is
a point that needs to be optimized in future work.

3. More results on Stree Data

We notice that BlockNeRF [7] uses a small block size (~
0.031km?), so we experiment on a similar setting in Ta-
ble 3. We also ablate block size and model capacity on
street views in the table below. Note that the grid resolu-
tion of TensoRF is 300/500/800, and the network width
of MipNeRF-360 is 256/512/1024 for small/medium/large
model size. We use the same number of rendering samples
as the original paper for all methods.

Blocks |  Size ‘ Model ‘ TensoRF MipNeRF-360
PSNRT SSIMT LPIPS| | PSNR1 SSIM+t LPIPS |
I | 0540km? | Large | 2123 0663 0556 | 2200 0717 0488
4 | 0135km? | Large | 2214 0710 0472 | 2583 0802 0381
8 | 0.068km? | Large | 2347 0751 0432 | 2644 0835 0320
16 | 0.034km? | Large | 2424 0798 0376 | 2667 0858 0274
16 | 0.034km? | Medium | 23.60 0767 0417 | 2603 082 0345
16 | 0.034km? | Small | 2296 0727 0469 | 2464 0763 0432

Table 3: Ablation on block size and model capacity on the
street data of Small City.

4. Extension Study

To delve deeper into the challenges of novel view syn-
thesis in the real-world urban scenes, we design two sets of
experiments that involved changing lighting conditions and
dynamic scenes .

4.1. INlumination

In the real-world scenes, the intensity and direction of
the light change throughout the day. We decouple these two
dimensions to explore the challenges involved. For the light
direction, we collect data with different light angle from O

degree to 90 degree with a interval of 5 degree. The first
row of Figure 2 shows the interpolation result of the direc-
tion of light from the first image (0 degree) to the last im-
age (90 degree). We can see that the shadow only appears
lighter, but it does not capture the essential relationship be-
tween the interaction of light and the building structure. For
light intensity, we collect data with three different light in-
tensity. In the second row of Figure 2, we can observe a
reasonable and continuous change from the first image to
the last image. However, there still exists a visual discrep-
ancy between the interpolated images and the ground-truth
images. This implies that the decoupling of light intensity
and scene’s color is not well executed.

4.2. Dynamic

We gather a collection of street view images featuring
moving people and traffic, aiming to model the stationary
buildings and filter out the dynamic traffic using NeRF-
W [3], a method that can distinguish between dynamic ob-
jects and static buildings. However, as shown in Figure 3,
we encounter a setback during the decomposing process;
some stationary objects such as parked cars and streetlights
were accidentally filtered out, which is unacceptable.
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Figure 1: Visualization of novel view synthesis results of different kinds of methods on the aerial data of our M atrixCity
benchmark with the multi-model and the single model settings. Note that the multi-model represents that we divide the small
city into five blocks and train a separate model for each block. The single-model represents that we train a single model for
the whole small city.

Figure 2: Visualization of the interpolation result of light angle (1st row) and light intensity (2nd row). In the first row, the
angle of the first image is O degree and the angle of the last image is 90 degree. The middle image in the orange box is the
interpolated 45 degree’s result. In the second row, the intensity of the first image is 1000 and the intensity of the last image is
3000. The middle image in the green box is the interpolated 2000 intensity’s result.
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Figure 3: Visualization of the novel view synthesis results
of the stationary scene with moving cars and people.



