
Supplementary: Grid-guided Neural Radiance Fields for Large Urban Scenes

1. Overview
In this supplementary, we first 1) elaborate the problem

background and general challenges for large-scale scene
modeling, and then glimpse at more 2) dataset details. We
then go into the framework details, and show 3) more re-
sults on different datasets and compare 4) various ablation
results on module design. 5) Illustrations for verifying our
model design effects are also analyzed. We also discuss 6)
several techniques for practicing visual improvements.

Three demo videos are provided. 1) Video A shows
the novel view renderings for traveling through the three
scenes. 2) Video B includes the Rubble scene, showing the
results exiting from the two branches. The left frame is ren-
dered from the grid branch, and the right frame is from the
NeRF branch. It can be seen that the NeRF branch pro-
vides better renderings in terms of visual smoothness and
sharp details for long videos. 3) Video C shows a compari-
son with MegaNeRF’s partition solution on Campus scene,
where a NeRF based method struggles with model capacity
issue when the scene scales up.

Left Frame (Grid branch) Right Frame (NeRF branch)

Figure 1. Demo video frame for two-branch outputs.

2. Background and Challenges.
Large-scale 3D scene reconstruction and rendering is a

long-standing problem in computer vision and graphics, and
also an exciting and important application in our daily life.
A recent line of works has been proposed, targeting the neu-
ral rendering for urban scenes, motivated by the compact
representation of these implicit scene representations. Mul-
tiple challenges for large urban scene modeling and render-
ing have been actively discussed. For example, BlockN-
eRF [13] learns multiple NeRFs from the autonomous driv-
ing data capturing San Francisco; MegaNeRF [15] also pro-
vide a division solution to partition large areas; Urban Ra-
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Figure 2. (1) Illustration of Campus scene, where common urban
objects (e.g., buildings, plants) are shown in the zoom-in pictures.
The majority of scene contents are wide spread in the xy-plane
compared to the limited scene height along the z-axis. The scene
covers over 2.7km2 with over 5k images, where the average pixel
footage only occupies a very small portion of the entire scene,
leading to the large-scale nature of our target scenario. (2) Our
methods embed such large physical world into a neural implicit
representation, where we store the information in a set of ground
feature planes, as shown on the left. With our representation, an
MLP renderer is able to convert the latent feature into RGB and
density, and provide novel view renderings for new camera poses
within the scene. Unlike the traditional way of storing such scenes
in textured meshes with extremely large number of vertices, neural
based methods offer a compact and adaptive way to embed large
3D scenes, enabling photo-realistic rendering results.

diance Fields [11] highlight the issue of sky modeling and
exposure variation; BungeeNeRF [18] targets the learning
from multi-scale images; Mip-NeRF 360 [2] extends from
Mip-NeRF [1] and address the unbounded issue in scene
modeling, propose a distortion loss for regularizing floating
ray points, and additionally use a proposal network to guide
the efficient sampling of NeRF model.

A popular alternative for NeRF-based representations is
to construct a feature grid for the target scene, where a ren-
der MLP is used to translate the hidden features for RGB
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Figure 3. A glimpse of our experimental real-world scenes with self-learned ground feature maps. Our rendering results are supplied on
the right with annotated red dots for the estimated locations..

and density, i.e., using a hybrid representation. Existing
methods (e.g., TensoRF [4], Instant-NGP [10], DVGo [12])
assume when the grid resolution is high enough, grid fea-
tures can faithfully encode scene geometry and texture and
a small MLP renderer is sufficient to translate grid features
into density and color, leading to superior efficiency com-
pared to pure MLP-based models. However, such an as-
sumption is challenged by large urban scenes, which are 1)
large-scale, 2) have rich and complex details, and 3) have
limited drone views. While grid-based approaches can in-
crease the resolution to match the scale, they often suffer
from severe degradation in quality due to several factors.
First, each grid is independently optimized and thus lacks
the inherent continuity that comes with MLP’s information-
sharing nature. Second, the inadequate non-linearity within
a grid unit via interpolated grid values also contributes to
degradation. Third, a small renderer MLP may struggle
to interpret the large feature space from the high-resolution
feature grid with limited capacity

Fig. 2 illustrates the application scenario of our method.
We aim to embed a large urban scene in physical world
into a compact neural implicit scene representation. Tar-
geting the aforementioned challenges in modeling large ur-
ban scenes, we seek a model-level solution to resolve the
challenges orthogonal to the commonly adopted partition-
ing techniques [13, 15]. Our two-branch model unifies the
two representations (NeRF-based & Grid-based) by taking
advantage of 1) the fast learning of a coarse scene with
explicit grid features, and 2) the inductive bias of large
MLPs with high-frequency PE inputs for learning a globally
smoother and locally more accurate scene representation.
The NeRF-branch here learns to accurately represent the
scene by referring to and refining grid features, more than
a simple MLP renderer as in previous works. It regularizes
and improves the grid features to encode more within-grid
variations that can better supplement PE inputs in modeling
scene details, being more effective than direct RGB supervi-

sion. Consequently, the regularized grid features also bene-
fit the small MLP renderer to interpret a more compact fea-
ture space with sufficient capacity to translate an increased
amount of grid values.

3. Dataset
To demonstrate the effectiveness of our method, ex-

periments are mainly conducted on real-world scenes that
are challenging for both NeRF and grid-based methods.
Our two-branch design is applicable for standard NeRF
datasets [9] and image/shape fitting settings, and is found
more advantageous in complex large urban scenes.

The main experiments reported in the paper are three
real-world urban scene datasets, each containing thousands
of high-resolution images captured by UAV. A typical drone
capturing path is shown in Fig 4. These scenes are gen-
erally bounded, as shown in Fig. 4. Since they are cap-
tured by a drone under a single scale, the difference is
slight between NeRF/Mip-NeRF’s results. The three scenes
depict diverse urban environments, including rural rubble
sites [15] (Rubble), university campus (Campus), and resi-
dential complexes (Residential). The camera poses are ob-
tained from the off-the-shelf commercial photogrammetry
software ContextCapture, which is widely used for creat-
ing an engineering-ready 3D model from oblique photog-
raphy in capturing city-wide data. On some of our data,
we find COLMAP/PixSFM failed to extract poses, pos-
sibly due to texture-less areas and sparse views, whereas
ContextCapture can still estimate poses with specified con-
trol points and parameters. Moreover, its extracted camera
poses are automatically in ENU coordinates that better fit
the ground plane representation by aligning the expanded
xy-plane with the physical ground, making it easier to verify
the learned feature plane and more suitable for urban analy-
sis. The camera poses are further normalized to be within a
unit ball in pre-processing. Since the original scene size is
large, it is therefore necessary to use high-frequency Fourier
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Figure 4. A typical drone flying pattern (camera poses) for a five-
lens oblique camera when capturing an urban scene shows diffi-
culty on modeling with limited viewing angles.

encoding (e.g. 215 as used in our experiments) to reflect the
finest pixel variation in imagery.

As demonstrated in Fig. 3, the Campus dataset spans a
ground area of ∼ 2.94km2, with a total of 5,130 images.
The Residential dataset spans a ground area of ∼ 2.7km2

with a total of 2,893 images. The images were captured by
a five-lens oblique camera. The Mill-Rubble is contributed
from MegaNeRF [15] and covers a nearby construction area
full of debris, consisting of 1,678 images. The difficulty of
learning such scenes with implicit neural scene representa-
tion varies. Experimentally, we found it relatively easy to
model Rubble where the scene contents lies on the grounds,
with little variation in height and sharp boundaries. In
contrast, the Residential scene is orders of challenging to
achieve high metric scores, considering its high complex-
ity and diversity of scene contents (e.g., the tall buildings,
the thin scaffolds, the near-ground lake, etc). To ensure
an efficient sampling on image pixels with allowable stor-
age and training time, in experiments, we downsample the
raw image resolution to moderate resolutions accordingly.
MegaNeRF trained on full resolution requires over 30 hours
on 8 A100 GPUs. We use downsampled resolution (e.g.,
1K) for training and validation to avoid OOM issues, as also
suggested in their code repository, and accordingly adopt a
smaller model configuration of MegaNeRF baseline, which
is sufficient to demonstrate our ideas on a single A100 GPU.

4. Framework Clarifications

Grid factorization with ground plane: Our one-
dimensional factorization (i.e., representing the major scene
with a ground feature plane) is particularly designed for
large scenes with widespread content in xy-plane. For
such scenes, using xy-plane can already capture the large
amount of information in 3D, with comparable performance
compared to the one using full three-dimensional factoriza-
tion. For example, the Residential scene has a large amount
of high-res buildings, but it can still be well handled via

Figure 5. Typical artifacts due to noisy grid features are commonly
found in modeling real-world scenes with Instant-NGP [10] with
no additional regularizations applied(e.g., distortion loss [2], total
variation loss [4]). The issue becomes exaggerated when applying
to large-scale scenes with severely downgraded rendering quality.

Instant-NGP (res 2048 
hashtable size 2^19)

TensoRF TensoRF

Instant-NGP (res 65536
hashtable size 2^23)

Figure 6. Grid artifacts of Instant-NGP [10] and TensoRF [4].
Instant-NGP (with implementation [14]) appears noticeable arti-
facts with discrete boundaries. The artifact maintains when we
increase the resolution and hashtable size to 65536 and 223; while
TensoRF appears blurry and wavy textures within and across grids.

64x64 256x256 1024x1024

Figure 7. Multiresolutuion feature planes capture the scene con-
tents with different granularities. We found such design greatly
improve the stability of learning for large scenes and can generally
improve the rendering quality without noticeable artifacts caused
by the discrete feature grids.

our factorization, since urban scenes usually have compact



and repeated information along the z-axis. We do not ex-
pect the pre-trained grid to recover all the details since it
will be further rendered by the NeRF-branch, as verified in
Fig. 15. The performance difference was minor when us-
ing full mode but requires more parameters. Moreover, the
shared z-axis encourages learning a more informative and
reliable ground plane. This compactness if useful when we
use sparse view images for training, where full 3D grid-
based methods can easily overfit to images with floating
points, as shown in Fig. 5. It also encourages distinct feature
grids covering similar 3D contents to take closer grid val-
ues, which can be useful for clustering categories from the
feature plane for object discovery, as discussed in Fig. 16.

Multi-resolution feature grids. It is designed to capture
scene contents at multiple granularities, which is demon-
strative strong representation power [10], and is suitable for
urban scene modeling with objects of different scales, as vi-
sualized in Fig. 7. A single-resolution one obtained by pro-
gressively upsample [4] is inferior in representation power
and behave sensitive to the choice of upsample steps. A sin-
gle grid resolution (e.g., TensoRF [4]) can lead to noticeable
grid artifacts in regions across boundary. Instant-NGP [10]
with multiresolution grids only, leads to severe discrete grid
artifacts in rendering, as shown in Fig. 6. Additionally,
3) the separate factorization of density and RGB fields al-
lows the disentanglement of concrete density and appear-
ance variations (e.g., casted shadows), as demonstrated in
Fig. 17.

Grid branch vs. NeRF branch. Grid branch contains a 2-
layer small MLP renderer directly translating the grid fea-
tures to density and colors. NeRF-branch is a 4-layer MLP,
which takes both PE and grid features as inputs and has
a reasonable capacity to encode finer scene details based
on the grid features. Both branches’ outputs are supervised
with the ground truth pixel value. Intuitively, this encour-
ages the inputs to the two branches to maximize their infor-
mation for predicting the 3D scene content.

PE appended to Grid branch. Naively enlarging the MLP
renderer and/or injecting high-frequency PE (like DVGo)
only leads to minor improvement (PSNR 0.1-0.3dB). We
conjecture that the grid features originally used for en-
coding scene contents are now entangled with PE inputs.
The two-branch supervision is thus necessary to maintain
informative grid features while letting PE capture high-
frequency details. A comparative ablation result showing
the rectified feature plane and the need for grid branch su-
pervision is shown in Fig. 8.

Two Stage vs. Joint Train from Scratch. While joint
training from scratch can deliver similar effects for small-
scale scenes or objects, the training is much slower as we
initially wanted to utilize the simplicity and speed of grid
branch. Meanwhile, NeRF alone is already hard to train on

large-scale scenes, let alone concatenating with not well-
trained features from grid branch at the beginning. While
NeRF is stronger with deeper MLPs, its rendering speed is
much slower than the Grid module.
Fast rendering with Grid Branch. After the joint training,
the rendering quality of the grid branch is improved whilst
maintaining its rendering efficiency. The NeRF branch can
be optionally excluded at inference time to realize fast ren-
dering of high-quality results (10x speed-up). This is usu-
ally enough for per-image rendering. However, for high-
quality video rendering, NeRF branch is still preferred.

5. Visual Quality Improvements
To further bring high-fidelity rendering results target-

ing on modeling large urban scenes, a series of special 2D
image-level techniques can be considered here.
Perceptual Losses: It has been vastly observed in genera-
tive tasks where reconstruction loss on RGB is not powerful
enough to obtain photorealistic results. To further boost the
visual quality when rendering the entire images, we con-
sider imposing a perceptual loss [19] on rendered patches in
later training stages. For datasets depicting natural scenes,
such perceptual losses can help reveal sharper details com-
pared to pure MSE losses based on per-pixel rendering pro-
cedure, as shown in Fig. 9. For each iteration, we ran-
domly select a batch of image patches from a sampled im-
age. We find that a large patch size is preferred (e.g., 64×64
or 128×128) to cover larger areas. For example, roads and
stripes can get better visual quality by displaying straight
lines that may otherwise suffer from little distorsion. GAN-
based [6] losses have also experimented. The results are
aligned with our expectations where regular patterns such
as windows and patterned facades gain generated texture,
as shown in Fig. 10. Note that these losses are applied only
when the MSE loss is relative low, i.e., the scene has been
reconstructed properly. Otherwise, such losses may easily
disrupt the training process. Moreover, as perceptual loss
evaluates on the feature space, the reconstructed color may
appear slightly deviate from the ground truth. Therefore,
a smaller loss weighted ratio between MSE and perceptual
loss is also needed.
Super-resolution Module. As mentioned earlier, the real
data captured by a drone (e.g., DJI) could have over 10000
pixels on one side. We experimented with the super-
resolution module in EG3D [3] with ×2 and ×4 settings.
Note that both these image-based techniques cannot guar-
antee strict 3D consistency, which is not ideal for rendering
long videos, but can generally improve the visual quality.

6. More Results and Additional Analysis
More visualized rendering results on our main scenes are

shown in Fig. 12. The rendered images with planed path



Tuned feat planeFixed feat plane Tune feat + supervision from grid

Figure 8. Grid branch rendering. The first column (fixed feat plane) represent a baseline treatment of DVGO [12]. We show on the later
two columns of the effectiveness of allowing the finetuning of grid branch during the second stage joint training, and the direct supervision
from the output head of grid branch.

give an immersive navigation experience in the large scene.

Small-scale Scenes. We also test our methods on Mip-
NeRF 360 data, achieving realistic rendering results with
our proposed representation and training design. As these
scenes are generally small-scale, where a vanilla NeRF
or existing grid-based methods can efficiently handle, our
methods’ use may seem unnecessary, and the advantage of
supplying two-branch is relatively minor. Still, we can ver-
ify the effects of adding NeRF module to supply the grid
features. As shown in Fig. 11, the grid branch shows a
homogeneous level-of-details rendering across the scene,

while NeRF branch builds upon the grid features further
recover the fine details on the delicate areas like a stump,
leaves, bottle, and object textures. Compared to NeRF-
based methods as adopted in Mip-NeRF 360 [2], the train-
ing of our methods is much faster as the grid pre-train stage
can fastly capture most scene details with fewer iterations.
As our methods are orthogonal to the techniques (e.g., pro-
posal network, space warping, distortion loss, etc.), further
improvements can be expected with additional inclusion.

Frequency Comparison. We visualize the activation of
frequency channels in the input positional encoding of



Figure 9. Perceptual losses (e.g., LPIPs [19]) can enhance over-
all image quality, providing more natural looking images matched
with humen perception.

Original w/ GAN lossw/ Superresolution 

Figure 10. Applying super-resolution module (on feature space) or
GAN- losses can add in more fine details for the final rendering,
especially for regions with geometric structures like buildings.

instant-NGP 
+ distorsion loss

instant-NGP 
+ distorsion loss
+ two branch

instant-NGP

Figure 11. Applying our two-branch structure to Instant-NGP [10]
based representation. Without any regularization on the feature
values, the learned geometry gets slightly noisy. We show that
with the additional NeRF branch and our joint training scheme,
together with the useful distorsion loss [2], resulting in the clean
and sharp geometry compared to its vanilla version.

NeRF in Fig. 15 and the frequency domain comparison in
Fig 14. It shows that the vanilla NeRF suffers from the
heavy learning burden where the low-to-high frequencies
are responsible for learning all coarse-to-fine details in the
scene, and fails to activate higher frequency channels. How-
ever, our approach encourages it to utilize such information
to model scene details. It is also noteworthy that such a
response is stronger among the z-axis encoding, indicating
that NeRF put more effort on making up the missing content
along the z-axis.

7. Discussions and Future Works

Applicability. Our method can be intuitively integrated
with other grid-based methods and their variants (e.g. Ten-

soRF [4], DVGo [12], Instant-NGP [10]). Fig. 11 show the
depth map rendered from the Instant-NGP with improved
quality after the two-branch training, which exhibits more
accurate details and less floats. Common rulebased regular-
izations, e.g. TV loss [4], distortion loss [2], are suggested
to be used in combination for better quality
Camera Poses. Currently, we rely on poses estimated by
a commercial professional software (ContextCapture) with-
out further adjustment. However, as pointed out by MegaN-
eRF [15], the camera pose’s accuracy may significantly im-
pact the final results. This effect has been observed when
we try to model buildings with sharp edges. The inaccurate
camera poses can prevent us from getting accurate bound-
aries for the buildings and introduce unwanted flickering
when rendering around such props. Therefore, it is best to
be combined with camera parameters optimization, as in-
troduced in [7, 17] with relative good initial poses.

Another interesting application is to allow the multi-view
image fusion with the neural rendering pipeline. While the
views captured by a drone can provide the overall scene
context, a dive-in into street-level views is highly desired
to achieve a more immersive experience. How to provide
accurate camera poses from these two sources of images
in a consistent world coordinate is also challenging. While
this could be easily done in a virtual presence, it is generally
challenging for large-scale capturing in the real-world.
Transient and Dynamic Objects. It is also noticed that
urban scenes are generally dynamic, with moving vehicles
and constantly varying lighting conditions. Without model-
ing these dynamics, resulting views can be flickering with
inconsistent content. One solution is to associate each view
with a latent appearance code that will be jointly learned, as
has been vastly adopted in previous works [5, 8, 13]. Note
that these lines of methods penalize transient objects by as-
signing a smaller weight on the self-learned instance masks,
which may cause ambiguity with those image regions with
relatively higher MSE errors with hard textures (e.g., high-
frequency details). Alternative solutions like using off-the-
shelf detection models or self-learned depth priors could
be promising directions. Note that the displayed examples
in our paper did not incorporate lighting variation control.
We have experimented with latent codes, which are able to
capture light variations and enable smooth interpolation be-
tween different lighting conditions.
Unbounded scene. The drone data for large-scale city
scene reconstruction are typically in grid-pattern with 45 to
90 look-down angle. For unbounded scenes, we can deploy
the space contraction technique from MipNeRF-360 [2] to
account for extremely far-away sky, or using a spherical
background grid to account for far-field background.
Scene Editing. Note that, the adoption of our ground fea-
ture plane reveals the potential of direct performing scene
editing on 2D feature planes. As feature grid values reflects
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Figure 12. Selected Rendering results from 3 scenes with our methods.
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Figure 13. Results on MipNeRF-360 [2]. For these small scenes, we use a moderate resolution for feature grids here, in order to verify
the effectiveness of resorting to NeRF’s positional embedding to deliver the high-frequency details. Though the feature grids are good at
capturing local contents even for a large-scale environment, the detailed textures are better recovered with NeRF branch, as shown above.

the local scene contents by storing features on the grid ver-
tices, the manipulation of local areas will not affect other
regions, which is hard to achievable with NeRF-based meth-
ods. The integration of real-time rendering speed with grid-
based methods may reach the demand for interactive editing
applications on large scenes.

Scalability. Scalability can still be our potential limitation
when facing larger scenes. As our approach still conditions
on the pre-trained feature grid, in general we expect a mod-
erate to high grid resolution to capture sufficient detail for

NeRF to refine. Although we have relaxed such requirement
compared to pure feature grid-based approaches, it can still
be a bottleneck that restrict neural rendering on large-scale
scenes. A feasible solution is to further combine our method
with geographical division as adopted by BlockNeRF [13]
and MegaNeRF [15], while assuring the rendering of each
sub-region can be as photorealistic as possible.

Another critical question to address is the scale-up of im-
age numbers and resolutions, where a single image can be
as large as 151 megapixels. Training with the image re-
construction process can make these practices hard to scale
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Figure 14. Fourier transformed rendering results demonstrate the
effiency of our methods in revealing fine-details for large-scale
scene rendering. NeRF-based method fail to capture the high fre-
quency details efficiently.

X-axis embeds Y-axis embeds Z-axis embeds X-axis embeds Y-axis embeds Z-axis embeds

2.5 0.5Low freq band High freq Low freq band High freq (a) Grid-guided NeRF (b) vanilla NeRF

Figure 15. Weight matrix analysis. We show the weights associate
to positional encoding channels ranging from 20 to 215 frequen-
cies (in total 96 channels), where the 3 block for each matrix cor-
respond to x, y, z dimensions. The weight pattern of (a) our NeRF
branch under guidance of grid features has relative easier learning
burden on the x, y dimensions which is largely captured by the
multi-resolution feature planes. Meanwhile, the high-frequency
channels along z-axis get well exploited to provide complemen-
tary information. In contrast, (b) the vanilla NeRF suffers from
large learning burden where all coarse-to-fine details in the scene
are required to be reasoned. As indicated in the value bars, all the
parameters have relative small activation values compared to (a),
and the high-frequency components are rarely activated even after
a long training process.

up, especially when the real-world captured data are from
extremely high-resolution video captures. Generally, we
can consider applying techniques used in [2, 18] by start-
ing with the downsampled version and applying progres-
sively high-resolution images to add in details. Additional
2D image techniques such as adopting a super-resolution

(a) Quantized categories (b) w/ category specific network

Figure 16. We exploit the learned 2D feature plane for clues of
scene contents with similar color and geometry, which can be
treated as an unsupervised discovery of semantic categories. The
clustered feature grids via Vector Quantization (VQ) [16] show
clear clue on places for trees, bushes, and roads, which indicate the
compact latent feature spaces capturing objects with similar ap-
pearances and geometries with close feature values. The rightmost
column shows the comparison between an experimental VQ-based
NeRF (middle) and a single NeRF (bottom) for our NeRF branch,
where the ground truth patch is shown on the top. The cluster-
aware sub-NeRFs bring more object-aware renderings even on dif-
ficult areas like bushes with clearer edges and shapes, where a
global NeRF may have difficulty to distinguish these semantics.

Density Planes

RGB Planes

Figure 17. A separate modeling of RGB and density planes can
accommodate cases with appearance variations, e.g., the casted
shadow of building can be reflected from the RGB plane. In such
cases, we can manipulate on the RGB plane only to change the
appearance without affecting the object density. The right column
shows the affecting of zeroing out one feature component in RGB
plane make the ground shadows fade out.

module may also be considered at the current stage. A large
model configuration and equipment requirement for a large
number of image training can be found in BlockNeRF [13],



which shows a workable strategy to perform training on that
data scale. The efficient training pipeline of neural radiance
fields, either in NeRF-based or hybrid based formats, still
leaves it an open question to explore in the future.
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