
Supplementary for CityNeRF: Building NeRF at City Scale

1. Spatial Prior for Ray Sampling
Camera Poses Acqusition. Since city-scale scenes are gen-
erally large, it is difficult to use COLMAP [11] to estimate
camera poses. We thus utilize the actual world coordinate
system in Google Earth Studio [1] to obtain the ground
truth camera poses. We scale the world coordinates pro-
portionally to make the camera poses arranged in a reason-
able range (not necessary to be within [−1, 1]) and maintain
enough precision at the same time. Accordingly, the Fourier
feature mappings sin(kx) in position encoding are allowed
to take k = 2i, i < 0 to accommodate these coordinate
values outside a single sine/cosine period.
Near-far Bounds. Due to the large range of camera po-
sitions and the limited number of point samples per ray,
NeRF severely suffers from a near-field ambiguity [4, 13]
as shown in Fig. 1, where rarely observed scenes such as
long-shot ones tend to be packed close to cameras to overfit
each input view. Based on the fact that city scenes are al-
ways on earth surface and will not exceed a certain height,
we impose a spatial prior to guide the network to sample
within an effective range. The near-far planes of each ray
are determined by computing their intersection of each ray
to the earth surface and the earth hull with a predefined
maximum altitude above the ground. An illustration of the
near and far bounds is provided in Fig. 2(a), denoted with
tnear and tfar. Specifically, we set the far bound of a ray to
its intersection with earth surface by:

dfar =
−2[û · (o− c)]±

√
∇

2‖û‖2
, and

∇ = 2[û · (o− c)])2 − 4‖û‖2(‖o− c‖2 − r2),

where û is the ray direction, o is the ray origin, c is earth
center and r is earth radius. Similarly, the near bound is
derived by substituting r with r + h, where h denotes the
hull of earth we set and the height of the tallest building in
the scene should be no more than h.

2. Miscellaneous
2.1. Weighted Position Encoding

The fidelity of NeRF depends critically on the use of po-
sitional encoding. For the k-th component in the log-linear

Figure 1. Near-field artifacts w/o using spatial prior.
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Figure 2. Qualitative comparison between using IPE calculated
per pixel and the unified image-wise IPE.

spaced frequencies, the default PE [7] uses a Fourier fea-
ture mapping with γk(x) = sin(kx)1. Instead of perform-
ing point-sampling along each ray, Mip-NeRF [2] divide
the casted cone into a series of conical frustum and con-
structs an integrated positional encoding (IPE) representa-
tion of the volume covered by each conical frustum. They
approximate the conical frustum with a multivariate Gaus-
sian, obtaining the IPE as:

Ex∼N (µ,σ2) [γk(x)] = sin(kµ) exp
(
−(kσ)2/2

)
.

1We eliminate γk(x) = cos(kx), and eliminate the case for y, z axes
and viewing directions here for notation brevity.

1



These changes allow the MLP to reason about the size and
shape of each conical frustum, instead of just its centroid.
We experimentally found that this could boost its learning
in modeling multi-scale scenes, while default PE may suf-
fer from recovering the right geometries. Specifically, IPE
can better capture the overall coarse geometry, though it
may perform slightly inferior than default PE while mod-
eling very fine detailed textures due to the dampened high-
frequency components.

Note that IPE can be viewed as a special case of a gen-
eral weighted position encoding, which assigns a smaller
weight to high-frequency components conditioned on the
input cone volumes to regularize different frequency bands,

γk(x) = wk(α) sin(kx),

with wk(α) = exp
(
−(kσ)2/2

)
.

(1)

The windowed position encoding (WPE) [5, 9, 10] also fol-
lows this weighted form with

wk(α) =
1

2
(1− cos(π clamp(α− k, 0, 1))), (2)

being proportional to the optimization progress. This treat-
ment is suitable for modeling single-scale scenes and can
encourage the model to capture the coarse geometry struc-
ture quicker at the starting phases, as explained in [10].

Through our design of CityNeRF, we take Mip-NeRF’s
IPE as the network input, rather than the original point-
based PE. As suggested in Mip-NeRF [2], we can manip-
ulate the integrated positional encoding by using a larger or
smaller radius than the true pixel footprint, where a smaller
radius shrinks the variance in the cross section of the cast
cone to reflect our preference for preserving more details.

Image-wise IPE. Below we explain an optional design we
integrated in CityNeRF to improve its performance in ren-
dering city-scale scenes. Minor artifacts can be observed
when we directly use IPE in rendering grand city views. Re-
call that Mip-NeRF models the size and shape of each con-
ical frustum by scaling the positional encoding with its co-
variance. Due to pixel offsets, computing the near-far bound
per ray leads to inconsistent sampling intervals within an
image, especially in grand-view images. As the results, rays
passing through edge pixels have much larger covariance
than center ones, causing artifacts on the edge, such as blur
and missing geometry as shown in Fig. 2(b). We eliminate
this discrepancy by scaling the current frustum’s covariance
with a factor tratio = dcenter/d, which is the ratio of the
near-far plane distance between the current ray and the cen-
ter ray. The modifying IPE hence becomes:

Ex∼N (µ,σ2) [γk(x)] = sin(kµ) exp
(
−(k · tratioσ)2/2

)
.

(3)
As a result, the frustum covariance within an image is uni-
fied to yield a more consistent result.
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Figure 3. Schematic comparison between NeRF and CityNeRF.

2.2. Sampling around Soft Depth

To bring more fine-detailed geometries, a series of works
has proposed to use either ground truth or additionally pre-
dicted depth information for more efficient point sampling
along the ray [3, 8, 12]. In real cases where no ground-
truth depth is available, one could consider loading a trained
model to output a rough depth guides and sample around
depth to provide high-concentrated samples. However, we
found that this hard operation heavily relies on the guided
depth and could bring unwilling artifacts when the guides
are inaccurate. We propose an alternative to perform a third
round sampling given the depth-like information derived
from the NeRF’s fine-stage sampling. This soft operation
performs surprisingly well to boost the texture and geome-
try details if we want to enhance the high-frequency details.
Note that, this additional round of sampling is not necessar-
ily needed in early training stages, but only optional in the
later stages when a final “spurt” in performance is desired.

3. More Qualitative Results and Visualizations

Model Comparisons. A schematic comparison between
vanilla NeRF and CityNeRF is shown Fig. 3. In a nutshell,
CityNeRF differs from NeRF in terms of the allocation of
output heads with multi-level supervision, and the stage-
wise training scheme with progressive growing model.

Qualitative Results. More qualitative comparisons be-
tween CityNeRF and MipNeRF (the best baseline method)
are shown in Fig. 4 and Fig. 5, where we showcase scenes
with various styles. All these scenarios demonstrate the su-
periority of CityNeRF compared to the baseline methods



Earth-scale (Extension) Populated Cities (Main Experiments) Places of Interest (Extra Tests)
New York New York San Francisco Seattle Rome Los Angeles Bilbao Paris

(56 Leonard) (56 Leonard) (Transamerica Pyradmid) (Space Needle) ) (Colosseum) (Hollywood Sign) (Guggenheim Museum) (Centre Pompidou)
Lowest Altitude (m) 290 290 326 271 130 660 163 159
Highest Altitude (m) 6,286,000 3,389 2,962 18,091 8,225 12,642 7,260 2,710
Number of Images 830 463 455 220

Table 1. Statistics of city scenes captured in Google Earth Studios for this supplementary.
PSNR: 22.910 PSNR: 20.867PSNR: 24.067 PSNR: 22.265

PSNR: 24.634 PSNR: 23.067

PSNR: 21.540 PSNR: 16.492PSNR: 21.980 PSNR: 19.915

PSNR: 22.807 PSNR: 20.884

PSNR: 23.190PSNR: 26.070

PSNR: 23.185 PSNR: 20.790

PSNR: 23..458 PSNR: 21.826

PSNR: 19.445PSNR: 20.824 PSNR: 22.002 PSNR: 21.118

PSNR: 21.471 PSNR: 19.794

PSNR: 25.143 PSNR: 21.860
PSNR: 23.544 PSNR: 22.261

PSNR: 24.328 PSNR: 21.991

Figure 4. Left: Ours CityNeRF. Right: Mip-NeRF baseline. Here we show more examples rendered by CityNeRF on five additional scenes
across 3 scales, including Hollywood Sign (Los Angeles), Centre Pompidou (Paris), Guggenheim Museum (Bilbao), Colosseum (Rome),
and Space Needle (Seattle). Statistics can be found in Tab.1. c©2021 Google

across all scales. It is noted that, we can even clearly see
the small size fonts on the flag in the Seattle scene.

Evolved Model Weights. With the progressive paradigm,
CityNeRF fully unleashes the power of the whole fre-

quency bands provided in the position encoding, while
vanilla NeRF fails to activate high-frequency channels in
PE. Fig. 6 visualizes the model weights value in these skip
layers from shallow to deep layers. A clear shift from low-
frequency channels to high-frequency channels in PE can be

https://www.google.com/help/terms_maps/
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Figure 5. Qualitative comparisons between NeRF [7], NeRF w/ WPE [10], Mip-NeRF-full [2], and CityNeRF. (src: San Francisco scene
c©2021 Google)
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Figure 6. Comparison in model weights between CityNeRF and
Mip-NeRF. The model weights are presented in value matrices,
where the x-axis represents the frequency components from 20

to 210 for (x, y, z) respectively, and the y-axis indicates different
feature channels. As the training proceeds, our CityNeRF activates
higher frequency Fourier features in PE to construct finer details,
while vanilla NeRF fails to access these portion of PE.
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Figure 7. Illustrative samples showing how later-stage training
helps the previous blocks form better geometry and textures. We
show the results obtained from H2 with training up to stage 2 and
stage 3 separately. The residual connection between blocks allows
supervisions from finer-detail views to guide the earlier blocks out-
put correct geometries, with which more complex details emerged
in later stages can be built upon. (src: Rome scene c©2021 Google)

observed in CityNeRF, while different skip layers in Mip-
NeRF equally biased to the low-frequency Fourier features.

Improved Block Heads. Fig. 7 shows the later training
stages can help improve or correct the predictions exit from
the earlier heads, with the aid of our residual design that
encourages the consistency between scales.

https://www.google.com/help/terms_maps/
https://www.google.com/help/terms_maps/


Figure 8. Rendered novel views for Earth-scale scene, trained with 5 stages.

Figure 9. Rendered novel views for drone captured scenes, trained with 2 stages.



Figure 10. CityNeRF trained on a scene consisting 2 places of interested. The camera trajectory is illustrated by arrows where it starts from
capturing one place at ground-level (yellow frame), and moves towards another place aloft, then dive to ground-level again (blue frame).

4. Extensions

Earth-scale NeRF. The progressive training scheme we
present to CityNeRF has the potential to tackle data with
arbitrary multi-scales. To test the generality of CityNeRF,
we run an extreme experiment on the earth-scale, where
the camera altitude can lift to >6,000 km and capture the
entire earth in the view. We set Lmax = 5 to tackle the
extreme large space in camera altitude. A selected subset
of rendered novel views is shown in Fig. 8, covering scales
from ground to satellite. CityNeRF successfully pack such
extreme scales into a single model, with high-quality pre-
served details across all scales. It is noted that vanilla NeRF
can hardly handle this scale of scene, resulting in extremely
unstable training that produce nan values constantly.

Real-world drone data. One promising application our
CityNeRF can bring about is the 3D reconstruction of city
scenes captured by a drone. While traditional 3D recon-
struction software always requires a dense capture of drone
images with enough overlap in order to successfully recon-
struct the model based on feature matching, NeRF could
provide a new approach to these tasks. We collect a drone
footage for an auditorium building, where the frames were
taken at different altitudes and angles. The images are
processed by COLMAP [11] to obtain the camera poses.
As shown in Fig. 9, we test CityNeRF’s generality on a
drone-captured scene with a simplified 2-stage training, our
CityNeRF can successfully recover the accurate geometry
and detailed textures both on close-up and distant views.

Multi-dive scenes. Orbit trajectories with ascending cam-
era altitude are used as our main training data. However,
our CityNeRF is well suitable for arbitrary camera trajec-
tories where the key is the multi-scale characteristic. The
above drone captured scenes already demonstrate one sce-
nario where the camera motion is relatively arbitrary. We
further deliberately test a two-dive scene captured in Google
Earth Studio where we require the fine-detailed building
models to cover two distant ground building complexes:

one for Canary Wharf and the other for Leadenhall, both
in London. The rendering results on novel views are shown
in Fig. 10, where CityNeRF can also handle such scenes.

5. Discussions and Limitations
Inconsistency in Training Data. As current CityNeRF is
built upon static scenes, it cannot handle inconsistency in
the training data. We observed that, in Google Earth Stu-
dio [1], objects with slender geometry, such as a lightning
rod, flicker as the camera pulls away. Artifacts like flicker-
ing moir patterns in the windows of skyscrapers, and differ-
ences in detail manifested as distinct square regions on the
globe are also observed in the rendered images served as
the ground truths2. Such defects lead to unstable rendering
results around certain regions and bring about inconsisten-
cies. A potential remedy is to treat it as a dynamic scene and
associate each view with an appearance code that is jointly
optimized as suggested in [6, 10]. Another potential limita-
tion is on computation. The progressive strategy naturally
takes longer training time, hence requires more computa-
tional resources.

Determining LOD. Each training image (and also the ren-
dered novel view) need to be associated with a level indi-
cator (i.e., LOD), with which the model knows where to
early-exit the rendering images to achieve the desired level-
of-detail. When rendering a continuous novel view trajec-
tory, though one can choose to render all the images with
the highest detail level obtained from the last block, it is
suggested to dynamically use the output heads from earlier
blocks to alleviate the aliasing issue. Once the camera poses
are known, the LOD can be easily determined based on their
distances to the ground target.

Potential Misuse. The photorealistic rendering offers the
possibility of abusing the content of the scene, such as re-
moving the watermark stamped on the original image for
copyright protection. When using this method, the relevant

2More details are discussed in Google Earth Studio: Best pratcies.

https://earth.google.com/studio/docs/best-practices/


provisions of copyright protection must be observed3.
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