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1. Overview
This supplementary is organized as follows: (1) In the

first section we show some concrete examples of the useful
asset library in industry when building indoor and outdoor
environments. (2) The second part elaborate our training de-
tails, including model adaptation and hyper-parameter set-
ting. (3) The third part includes ablation studies on the
number of clusters to discretize ground feature plane; and
alternations decode 2D ground feature into 3D. (4) Next
we show some special cases which might require extra cau-
tions or post-processing. (5) Finally we include some ap-
plications to demonstrate the flexibility of AssetField and
its potential to cooperate with physical rendering pipelines.
Video demos are also provided to show various editing ef-
fects using the asset library extracted by AssetField, span-
ning instance-level, category-level to scene-level manipula-
tion.

2. Asset Library in Industry
Having an asset library is one of the key enabler to cre-

ate large-scale environments in virtual presence. Man-made
environments like indoor and urban scenes are comprised of
highly structured and repetitive items. For example, an of-
fice is composed by groups of chairs and tables of different
types, organized in grid or other regular patterns; a city is a
structured combination of city blocks, roads, facilities and
greening, where each block is constructed by buildings of
different categories. It is a common practice in gaming in-
dustries to first create an asset library, then deploy asset in-
stances in the scene per demand. Fig. 1 shows examples of
asset libraries for rooms and city regions [2, 1, 5, 4]. On the
right are asset instances grouped in categories. Note that
in practice, the definition of category ‘templates’ and ‘in-
stances’ different from projects to projects. For example, in
Fig. 1 (b), sofas with the same shape but different textures
are stored in the asset library; while in Fig. 1 (d) distinctive
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Figure 1. Examples of asset libraries used in virtual environments
built with UE52. (a) are assets used to construct a living room; (b)
is a collections of sofa instances; (c) are assets in a city region; (d)
is a collection of buildings templates.

landmarks are saved in the asset library as templates.

3. Training Details

We use NeRF [8] and TensoRF [3] as baselines to eval-
uate the rendering quality of the original scenes. Con-
cretely, (1) For density field, both S(tandard)-AssetField
and I(ntegrated)-AssetField uses 16 components (i.e. chan-
nel dimension); feature vectors sampled from ground fea-
ture planes M and vertical feature axes H are combined
via outer product following [3]. S-AssetField separately
models color and semantic fields using 48 components for
each field, and also adopts outer product to recover 3D
features in space. I-AssetField unifies color and semantic
field into the RGB-DINO ground feature plane Mrgb -dino,
which has 48 components. The feature vectors sampled
from Mrgb -dino and the mapped latent features vrgb and
vdino are concatenated then decoded into RGB and DINO
feature values. Decoders Decσ , Decrgb, Decdino are all
single layer MLPs. (2) TensoRF baseline uses 6, 16, 16 ten-
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sor components for each XYZ-mode of density, color and
DINO fields respectively, which results in similar amount
of total components (18, 48, 48) as AssetField (16, 48, 48).
(3) For NeRF baseline, the hidden feature before alpha pre-
diction is transformed by a 2-layer MLP with ReLU activa-
tion to a 384-dim feature vector, which is then aggregated
via volume rendering to output the pixel’s DINO feature.
To alleviate over-fitting and local minima issues in gradi-
ent descent, we utilize TV (total variation) loss on ground
plane features for both AssetField and TensoRF. Specifi-
cally, TV loss weight is set to 0.1 for density plane, and
0.01 for RGB/DINO/RGB-DINO plane. We report PSNR,
SSIM [13] and LPIPS (e−1) [15] scores for novel view syn-
thesis, and qualitatively show the editing results on various
tasks.

On synthetic scenes (main-Fig.7), we clustered all
ground feature planes into 10 clusters at assets mining
step (main-Sec.3.2) using K-means [7]. During assets
grouping, Agglomerative clustering [9] is adopted to group
feature patches using JS-divergence [6] as the distance met-
ric. The number of clusters is set by observing the training
views, and set to be a bit higher than the observed number
of categories. On real-world datasets we normally use 3 to
5 clusters to filter objects for assets mining; and 7 to 10
clusters for assets grouping.

4. Ablation
Number of Clusters. Recall that we first discretize the
feature plane with K-means clustering to obtain a binary
image and detect objects with the finding contour algorithm.
We propose to perform this step on the density ground fea-
ture plane as it is cleaner and exhibits sharper object bound-
aries. In Fig. 2, we show the clustering results of using
{2, 6, 10, 20} clusters and also the results of clustering on
the RGB-DINO feature plane. The scene demonstrated here
is a restaurant, which contains various objects of different
sizes and are organized in patterns. It can be noticed that,
on the density ground plane, when using a small number of
clusters (e.g. 2 clusters), some objects cannot be identified
from the background, as shown in the 3rd row of Fig. 2.
When the number of clusters increases, more objects can be
discovered by the finding contour algorithm, whereas using
10 and 20 clusters give similar results. On the other hand,
although the RGB-DINO feature plane can easily separate
objects from the background, the produced feature map is
not as sharp as the density plane. As a result, close objects
are always attached to each other, making them inseparable
on the feature plane, as illustrated in the 5th row of Fig. 2 .

Decoding Ground Feature Plane to 3D. Recall that fea-
tures sampled from ground planes need to be combined with
vertical information to decode 3D scene features. Naively,
the plane and axis features can be directly concatenated and
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Figure 2. Ablation on using different number of clusters to dis-
cretize ground feature planes at object detection step. In gen-
eral, the density plane is cleaner and sharper than the RGB-DINO
plane; objects placed close to each other are very likely to be insep-
arable on the RGB-DINO plane (5th row). On the density plane,
small objects might be clustered into background when using a
small number of clusters; increasing the number of clusters can
alleviate this issue (3rd row).

Scene1 Scene2 Scene3 Scene4
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Concat 36.398 0.991 0.051 37.135 0.994 0.036 32.552 0.974 0.124 32.960 0.978 0.227
PE(z) 36.158 0.989 0.048 37.846 0.996 0.029 37.385 0.995 0.030 36.899 0.987 0.085
Product 36.526 0.991 0.047 37.271 0.994 0.035 37.249 0.995 0.032 37.716 0.991 0.060

Table 1. Ablation on the 4 scenes (the same as in the main pa-
per) using different ways to combine vertical information with
ground plane features. (1) Concat concatenates z-axis fea-
tures with ground plane features; (2) PE(z) concatenates the
Fourier frequency encoded z-coordinates with ground plane fea-
tures; (3) Product uses outer-product between z-axis features and
ground plane features. We report PSNR(↑), SSIM(↑) [13] and
LPIPS(↓) [15] for evaluation.

fed to decoders. We on the other hand follow the idea of [3],
and combine them via outer-product to recover 3D scene in-
formation. Different from ours, Sharma et al. [10] directly
use the vertical z-axis coordinate, then concatenate with the
ground plane feature to obtain 3D features. In Tab. 1, we
quantitatively show the novel view rendering quality of the
aforementioned three different ways. In general, the per-
formance on novel view synthesis is similar, where Con-
cat appear to be inferior to others on more complex scenes
(Scene3 and Scene4). Inspecting the learned ground fea-
ture planes, such as Fig. 3, it can be noticed that Concat
gives fuzzy feature, leading to inseparable objects; PE(z)
tends to learn a separate feature space for boundaries, which
makes objects indistinguishable if only the background re-
gion is masked. However, with an additional edge mask
(left corner blue boxes), instances can still be isolated.
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Figure 3. Performing finding contours on background filtered den-
sity ground feature plane learned with (Outer-)Product, Concat
and PE(z). Concat gives fuzzy feature plane where close ob-
jects are grouped together; PE(z) tends to learn a feature for
objects’ edge, which makes objects indistinguishable if only the
background region is masked. However, with an additional edge
mask (also derived from clustering) as shown in the blue boxes,
instances can still be isolated.

5. Special Cases and Potential Failures
Recall that in the main paper, we propose a pipeline for

object detection which involves masking the background
and performing contour detection on the binary image.
While this strategy works on most scenes composed of non-
overlapping objects with convex shapes, there are some ex-
ceptional cases that may cause failure at this step but can
still be solved with delicate adjustment.

Floor Removal. Background can be handled in various
ways. In the main paper, we use clustered DINO feature
to separate objects from the background (i.e. floor). It can
also be estimated from depth by first learning to model the
scene to obtain a depth map; or from annotations like a
mask or user scribble. Background is also separable by
grouping the learned ground features into a few clusters
(e.g., 3 clusters) that roughly corresponds to foreground
and background regions; and manually filter out the back-
ground, which is adopted in our experiments on real-world
scenes (e.g. main-Fig.6, main-Fig.10). Fig. 4 shows an ex-
ample scene from [12] where modeling with floor yields
unwanted noise in the ground feature plane. Despite being
disturbing, adding a simple clustering step can still distin-
guish it from objects. The filtered ground feature plane is
then suitable for object detection afterward.

Nested Structure. Scene contents may not always be in
convex shape from a top view. For example, in Fig. 5 (a), the
orange chair is partially enclosed by a the gray table that is
in an ‘L’-shape. Since the ‘L’-shaped table is not convex, the
bounding box predicted by contour detection is not tightly
aligned with the object edge. Consequently, it includes the
chair in its patch. Suppose the table and chair are desired
to be separated instead of being treated as a combo. In that

Original RGB-DINO 
ground plane Background mask
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ground plane

Figure 4. Modeling scene with floor results in noisy ground fea-
ture plane. The floor region can be identified on RGB-DINO fea-
ture plane via a clustering step. The filtered feature plane is then
friendly to object detection.
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Figure 5. Special cases in object detection step. (a) Nested struc-
ture caused by non-convex shaped objects, which can be sepa-
rated by (c) firstly identify the enclosed chair, then set its value
to background feature to obtain solely the table patch. (b) Stacked
structure where items are placed on top of another object’s surface,
which can be detected by (d) another round of filtering that treats
the table-top as the background.

Original Scene Remove1 Remove2

ObjectNeRF Example

Figure 6. Object removal on toydesk [14]. Objects are first iden-
tified on each ground feature plane then substituted by the table
feature patches. We simply ‘crop’ a feature patch from the table
region and ‘paste’ it on to the object regions. Note that our method
can also remove the shadow along with the object, whereas Object-
NeRF [14] cannot and leaves a black hole on the table-top (red).

case, the user can first identify the chair patch, then remove
it by filling this region with background feature values, as
demonstrated in Fig. 5 (c). Note that when reconfiguring the
scene, the ‘L’-shaped table patch need to be always placed
at the back so it won’t occlude any enclosed objects.

Stacked Instances. Man-made scenes are actually in hi-
erarchical structures. Fig. 5 (b)) shows an example where
small objects are placed on top of a table, forming a hier-
archical structure. If the user wants to also extract these
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Figure 7. Scene manipulation on 2D canvas with Blender4 animation tools. The first row is the timeline of the animation; the second row
is the top-view of the scene (assets represented by colored boxes), resemble a 2D canvas. We can first configure the scene and plan the
transformation of assets in Blender, then export the frame sequence as ‘floorplans’ and fill each colored box with object features (with
warping or rescaling) extracted by AssetField. The last row is the direct rendering results correspond to the key frames (white dots in
timeline). Using various interpolation methods provided by Blender animation tools, users can easily play with all kinds of transformations
and configurations with smooth transitions. The integrated inference pipeline of Blender (or any other user-friendly 2D/3D softwares) and
AssetField also enable investigations on the 3D consistent rendering results from arbitrary viewing angle.

Lifted SunkenAligned

toydesk1 toydesk2

Figure 8. We insert the plastic bowl from toydesk1 to toy-
desk2 [14]. Vertical translation of the bowl is realized by jointly
modeling the aligned/lifted/sunken-toydesk1 with toydesk2 and
compose the new scene with feature patches inferred at different
scene elevation.

small items as asset, one more step of filtering can be per-
formed on the ground feature plane by treating table sur-
faces as the background, as shown in Fig. 5 (d). After sep-
arating the items from the table surface, the ‘hole’ left on
table’s feather patch can be filled with the average feature
of the table instance. Fig. 6 demonstrates an example where
objects on the table are removed, which is realized by sub-
stituting the original object feature patches with the table
feature patches. Note that our method can also remove the
shadow along with the object, whereas ObjectNeRF [14]
cannot eliminate the shadow and leaves a black hole on the
table-top. Nevertheless, for cases where objects on top is
larger (e.g. a chair being pushed in) or of the same size as
the bottom object (e.g. a stack of boxes), it is necessary to
lift the 2D ground plane to a full 3D voxel grid to distin-
guish.

Vertical Translation. As our proposed ground feature
plane representation is specifically designed for scenes
widespread along a horizontal plane, the flexibility of mov-
ing objects vertically is restricted because of the shared ver-
tical feature axes. However, since height information is
fully encoded into the scene density feature, an object in-
stance can still appear at a different elevation given there
is a lifted object instance within its category. User can di-
rectly replace current instance, or substitute its density fea-
ture patch with a lifted one. In Fig. 8 we show an example
of (cross-scene) insertion of an object to different heights.
In this experiment, we jointly model 4 scenes, namely
toydesk2, aligned-toydesk1, lifted-toydesk1 and sunken-
toydesk1. Specifically, the camera poses of lifted/sunken-
toydesk1 is shifted up/down to represent toydesk1 at dif-
ferent elevation. The new scene is then composed using
the bowl’s feature patches inferred at each height variation.
However, since the feature patch of the bowl is entangled
with the table, such strategy results in artifacts where part
of the table is also lifted, as shown in the middle of Fig. 8.
Alternatively, one may choose to expand the ground plane
into 3D and directly exchange the feature voxels along the
vertical direction; or incorporate a new elevation map that
is used to be subtracted by the z values when indexing the
corresponding z embedding.

6. Miscs.
Asset Library Expansion. In real-world scenario, one
might want to enlarge existing asset library with new ob-
jects or objects from other scenes, instead of jointly mod-
eling the new and old scenes from scratch. To incorporate
a new scene Si, we fix H0 from the existing scene(s) and
learn a set of exclusive ground plans Mi to represent Si.
Note that we need to scale the new scene Si to be within



Figure 9. We separately learn the furniture asset field and container
asset fields via the cross-scene learning, which can be assembled
to form a realistic indoor scene.

the height range of the existing scene(s) since H0 is fixed.
Contents vertically exceed the original scene bound will not
be recovered. Furthermore, to make cross-scene learning
more effective, we suggest to start the training on a diverse
scene, or jointly train different scenes to obtain a informa-
tive H0 (e.g. avoid too much vertical empty space being
encoded to z-axis feature), such that a new set of ground
feature planes Mi of density, color and semantic field can
be effectively decoded with H0 to fit new scenes.

Interactive Editing With AssetField, 3D scene editing
can be achieved with simple manipulation on 2D planes.
Here we show one example of how we enable the easy pro-
duction of animated scenes with manipulated layouts. We
first construct a blank canvas in Blender representing the
empty ground plane, and create a “rectangle object” for
each mined asset from the ground plane with the retrieved
center, width and height, and orientations. Users can then
easily manipulate each object and add animation to the lay-
outs with all kinds of tools in Blender (e.g., translation,
rotation, deformation, scaling, etc.). A demo timeline in
Blender is shown in Fig. 7. We can then obtain the con-
figuration of each object at each timestamp, and use them
to configure the ground feature planes with the placed asset
templates. The learned renderer can then naturally produce
the animated frames with changing layouts from arbitrary
viewpoints. The demo video for this example is provided.

Scene Assembling. The environments or containers (e.g.,
an empty house) can also be considered as a special cat-
egory of assets, where small objects (e.g., furniture) can
be placed into to deliver immersive experience. Fig. 9 il-
lustrates such idea by separately modeling these two types
of assets. The final scene can then be composited with
summed density value and weighted color, which can cor-
rectly handled occlusions between different objects [11].
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